AI Safety Best Practices for Production Applications
Building AI-powered features is exciting, but shipping them responsibly requires thoughtful safety measures. Here's our comprehensive guide to AI safety in production.
The Safety Stack
Think of AI safety as layers:
1. Input Filtering - Catch problems before they reach the model
2. Model Selection - Choose models with built-in safeguards
3. Output Filtering - Review generated content before serving
4. Monitoring - Detect issues in production
5. Response Plan - Handle incidents gracefully
Input Filtering
Prompt Injection Prevention
// Bad: Direct user input to model
const result = await model.run({ prompt: userInput });
// Good: Sanitize and validate input
function sanitizePrompt(input) {
// Remove potential injection attempts
const sanitized = input
.replace(/ignore (previous|all) instructions/gi, '')
.replace(/system:/gi, '')
.slice(0, 1000); // Limit length
return sanitized;
}
const result = await model.run({
prompt: sanitizePrompt(userInput)
});Content Policy Checks
// Pre-check prompts against your content policy
async function checkContentPolicy(prompt) {
const violations = [];
// Check for prohibited content
const prohibitedPatterns = [
/violence against/i,
/illegal (drugs|weapons)/i,
// Add your patterns
];
for (const pattern of prohibitedPatterns) {
if (pattern.test(prompt)) {
violations.push(pattern.toString());
}
}
return {
allowed: violations.length === 0,
violations
};
}Choosing Safe Models
Abstrakt provides safety metadata for every model:
const model = await abstrakt.models.get('flux-schnell');
console.log(model.safety);
// {
// nsfwFilter: true,
// contentPolicy: 'strict',
// inputValidation: true
// }Model Safety Comparison
Output Filtering
Automated Content Review
async function generateWithSafetyCheck(prompt) {
const result = await abstrakt.run('flux-schnell', { prompt });
// Run safety check on output
const safetyCheck = await abstrakt.safety.check(result.image);
if (!safetyCheck.safe) {
console.log('Content flagged:', safetyCheck.reasons);
// Options:
// 1. Regenerate with modified prompt
// 2. Return placeholder
// 3. Request human review
return {
success: false,
reason: 'Content did not pass safety review'
};
}
return { success: true, result };
}Human-in-the-Loop
For high-stakes applications, add human review:
async function generateWithHumanReview(prompt) {
const result = await abstrakt.run('flux-schnell', { prompt });
// Queue for review if confidence is low
if (result.safetyScore < 0.9) {
await reviewQueue.add({
content: result,
prompt,
userId: currentUser.id
});
return {
status: 'pending_review',
message: 'Your content is being reviewed'
};
}
return result;
}Production Monitoring
Real-time Alerts
// Set up monitoring for safety events
abstrakt.on('safety_event', async (event) => {
await slack.send({
channel: '#ai-safety-alerts',
text: `Safety event: ${event.type} - ${event.details}`
});
// Log for analysis
await analytics.track('safety_event', event);
});Usage Patterns
Monitor for abuse patterns:
Incident Response
Prepare Your Playbook
1. Detection: How will you know there's a problem?
2. Assessment: How severe is it?
3. Containment: How do you stop the bleeding?
4. Communication: Who needs to know?
5. Resolution: How do you fix it?
6. Review: What can you learn?
Kill Switch
// Always have a way to disable AI features quickly
const AI_ENABLED = process.env.AI_ENABLED !== 'false';
async function generateContent(prompt) {
if (!AI_ENABLED) {
return {
error: 'AI features temporarily disabled',
fallback: true
};
}
return abstrakt.run('flux-schnell', { prompt });
}Conclusion
AI safety isn't a checkbox—it's an ongoing commitment. Build these practices into your development process from day one, and you'll ship products that users can trust.
Need help implementing safety measures? Our team is here to help at safety@abstrakt.one.