AdvancedUpdated Dec 13, 2025
Frame Interpolation Deep Dive
Create smooth slow-motion effects and increase video frame rates using AI-powered frame interpolation with RIFE and optical flow.
DMW
Dr. Marcus Webb
ML Research Lead
15 min read
What is Frame Interpolation?
Frame interpolation generates new frames between existing ones, enabling:
- Frame rate conversion (24fps → 60fps)
- Smooth slow motion without artifacts
- Video quality enhancement
How It Works
Traditional video at 24fps shows 24 images per second. AI interpolation can:
- Analyze motion between frames
- Predict intermediate positions
- Generate new frames
- Create smoother playback
Basic Frame Interpolation
python
from abstrakt import AbstraktClient
client = AbstraktClient()
result = client.run("fal-ai/frame-interpolation", {
"input": {
"video_url": "https://example.com/original.mp4",
"target_fps": 60,
"model": "rife"
}
})
print(f"Interpolated video: {result.video.url}")Interpolation Models
RIFE (Real-time Intermediate Flow Estimation)
- Best for: General purpose
- Quality: Excellent
- Speed: Fast
Optical Flow
- Best for: Simple motion
- Quality: Good
- Speed: Very fast
Frame Blending
- Best for: Quick results
- Quality: Basic
- Speed: Instant
python
# RIFE - Best quality
{"model": "rife", "target_fps": 60}
# Optical flow - Balanced
{"model": "optical_flow", "target_fps": 60}
# Blend - Fastest
{"model": "blend", "target_fps": 60}Creating Slow Motion
Slow motion combines interpolation with playback speed reduction:
python
def create_slow_motion(video_url, slowdown_factor=4):
"""
Create slow motion video.
slowdown_factor=4 means 4x slower playback
"""
# First, interpolate to higher fps
interpolated = client.run("fal-ai/frame-interpolation", {
"input": {
"video_url": video_url,
"multiplier": slowdown_factor, # 4x more frames
"model": "rife"
}
})
# The video will play at original fps but with 4x frames
# resulting in 4x slower motion
return interpolated.video.urlFrame Rate Conversions
Common conversions:
| Original | Target | Use Case |
|---|---|---|
| 24fps | 30fps | US broadcast |
| 24fps | 60fps | Gaming/sports |
| 30fps | 60fps | Smooth playback |
| 60fps | 120fps | High-end displays |
| 24fps | 240fps | Slow motion |
Quality Settings
python
# Standard quality - faster
{
"input": {
"video_url": "...",
"target_fps": 60,
"quality": "standard"
}
}
# High quality - slower but better
{
"input": {
"video_url": "...",
"target_fps": 60,
"quality": "high",
"denoise": True
}
}Handling Artifacts
Common artifacts and solutions:
Ghosting
Motion blur from fast movement
- Solution: Use RIFE model, reduce multiplier
Warping
Distortion in complex scenes
- Solution: Lower target FPS, use optical flow
Edge flickering
Inconsistent edges between frames
- Solution: Enable denoising, use high quality mode
Batch Processing Videos
python
async def interpolate_batch(video_urls, target_fps=60):
tasks = []
for url in video_urls:
task = client.run_async("fal-ai/frame-interpolation", {
"input": {
"video_url": url,
"target_fps": target_fps
}
})
tasks.append(task)
results = await asyncio.gather(*tasks)
return [r.video.url for r in results]Performance Tips
- Start with 2x - Test before going higher
- Check source quality - Bad input = bad output
- Consider file size - More frames = larger files
- Use appropriate model - RIFE for quality, blend for speed
- Process in chunks - For very long videos
Complete Example
python
from abstrakt import AbstraktClient
import asyncio
client = AbstraktClient()
async def enhance_video(video_url):
# Step 1: Interpolate to 60fps
interpolated = await client.run_async("fal-ai/frame-interpolation", {
"input": {
"video_url": video_url,
"target_fps": 60,
"model": "rife",
"quality": "high"
}
})
print(f"Enhanced video: {interpolated.video.url}")
print(f"Original: 24fps → New: 60fps")
return interpolated.video.url
# Run
url = asyncio.run(enhance_video("https://example.com/video.mp4"))Next Steps
- Learn text-to-video
- Optimize video latency
- Explore audio generation
#video#frame-interpolation#slow-motion#rife