TutorialsVideoOptimizing Latency for Real-time Video
IntermediateUpdated Dec 15, 2025

Optimizing Latency for Real-time Video

Learn how to reduce generation time using turbo models and WebSocket streaming for live applications.

MP
Maya Patel
API Architect
12 min read

Understanding Video Generation Latency

Video generation typically takes 30-120 seconds. For real-time applications, we need strategies to minimize perceived latency.

Latency Breakdown

PhaseTypical Time
Queue wait0-10s
Model loading5-15s
Generation20-90s
Encoding2-5s
Upload1-3s

Strategy 1: Use Faster Models

python
# Fast option (~30s)
result = client.run("fal-ai/ltx-video", {
    "input": {"prompt": "...", "duration": 3}
})

# Balanced option (~45s)
result = client.run("fal-ai/hunyuan-video", {
    "input": {"prompt": "...", "duration": 5}
})

# Quality option (~90s)
result = client.run("fal-ai/kling-video/v1/standard/text-to-video", {
    "input": {"prompt": "..."}
})

Strategy 2: Progressive Loading

Show users something while generating:

javascript
async function generateWithPreview(prompt) {
  // 1. Generate a quick preview image first
  const preview = await client.run('fal-ai/flux/schnell', {
    input: { prompt: prompt + ', first frame of video' }
  });
  
  showPreview(preview.images[0].url);
  
  // 2. Start video generation
  const video = await client.run('fal-ai/minimax/video-01', {
    input: { prompt }
  });
  
  return video;
}

Strategy 3: WebSocket Streaming

Get real-time progress updates:

javascript
const ws = new WebSocket('wss://api.abstrakt.one/v1/stream');

ws.onopen = () => {
  ws.send(JSON.stringify({
    action: 'generate',
    model: 'fal-ai/minimax/video-01',
    input: { prompt: '...' },
    api_key: 'YOUR_KEY'
  }));
};

ws.onmessage = (event) => {
  const data = JSON.parse(event.data);
  
  switch (data.type) {
    case 'progress':
      updateProgressBar(data.progress);
      break;
    case 'preview':
      showPreviewFrame(data.frame_url);
      break;
    case 'complete':
      playVideo(data.video_url);
      break;
  }
};

Strategy 4: Pre-generation Queue

For predictable use cases, pre-generate content:

python
class VideoCache:
    def __init__(self):
        self.cache = {}
        self.client = AbstraktClient()
    
    async def warm_cache(self, common_prompts):
        """Pre-generate common videos"""
        for prompt in common_prompts:
            if prompt not in self.cache:
                result = await self.client.run_async(
                    "fal-ai/ltx-video",
                    {"input": {"prompt": prompt}}
                )
                self.cache[prompt] = result.video.url
    
    async def get_video(self, prompt):
        if prompt in self.cache:
            return self.cache[prompt]
        # Generate on-demand if not cached
        result = await self.client.run_async(...)
        return result.video.url

Strategy 5: Reduce Resolution

Lower resolution = faster generation:

python
# Fast: 480p
{"resolution": {"width": 854, "height": 480}}

# Balanced: 720p
{"resolution": {"width": 1280, "height": 720}}

# Quality: 1080p
{"resolution": {"width": 1920, "height": 1080}}

Strategy 6: Shorter Duration

Shorter videos generate faster:

python
# 3 seconds = ~30s generation
# 5 seconds = ~45s generation
# 10 seconds = ~90s generation

Monitoring Latency

python
import time

start = time.time()
result = client.run("fal-ai/minimax/video-01", {...})
latency = time.time() - start

# Log to your metrics system
metrics.record('video_generation_latency', latency, {
    'model': 'minimax',
    'duration': 5
})

Best Practices Summary

  1. Choose the right model for your latency needs
  2. Show preview images while generating
  3. Use WebSockets for progress updates
  4. Pre-generate common content
  5. Optimize resolution and duration
  6. Monitor and track latency metrics

Next Steps

#video#performance#streaming#real-time