IntermediateUpdated Dec 15, 2025
Optimizing Latency for Real-time Video
Learn how to reduce generation time using turbo models and WebSocket streaming for live applications.
MP
Maya Patel
API Architect
12 min read
Understanding Video Generation Latency
Video generation typically takes 30-120 seconds. For real-time applications, we need strategies to minimize perceived latency.
Latency Breakdown
| Phase | Typical Time |
|---|---|
| Queue wait | 0-10s |
| Model loading | 5-15s |
| Generation | 20-90s |
| Encoding | 2-5s |
| Upload | 1-3s |
Strategy 1: Use Faster Models
python
# Fast option (~30s)
result = client.run("fal-ai/ltx-video", {
"input": {"prompt": "...", "duration": 3}
})
# Balanced option (~45s)
result = client.run("fal-ai/hunyuan-video", {
"input": {"prompt": "...", "duration": 5}
})
# Quality option (~90s)
result = client.run("fal-ai/kling-video/v1/standard/text-to-video", {
"input": {"prompt": "..."}
})Strategy 2: Progressive Loading
Show users something while generating:
javascript
async function generateWithPreview(prompt) {
// 1. Generate a quick preview image first
const preview = await client.run('fal-ai/flux/schnell', {
input: { prompt: prompt + ', first frame of video' }
});
showPreview(preview.images[0].url);
// 2. Start video generation
const video = await client.run('fal-ai/minimax/video-01', {
input: { prompt }
});
return video;
}Strategy 3: WebSocket Streaming
Get real-time progress updates:
javascript
const ws = new WebSocket('wss://api.abstrakt.one/v1/stream');
ws.onopen = () => {
ws.send(JSON.stringify({
action: 'generate',
model: 'fal-ai/minimax/video-01',
input: { prompt: '...' },
api_key: 'YOUR_KEY'
}));
};
ws.onmessage = (event) => {
const data = JSON.parse(event.data);
switch (data.type) {
case 'progress':
updateProgressBar(data.progress);
break;
case 'preview':
showPreviewFrame(data.frame_url);
break;
case 'complete':
playVideo(data.video_url);
break;
}
};Strategy 4: Pre-generation Queue
For predictable use cases, pre-generate content:
python
class VideoCache:
def __init__(self):
self.cache = {}
self.client = AbstraktClient()
async def warm_cache(self, common_prompts):
"""Pre-generate common videos"""
for prompt in common_prompts:
if prompt not in self.cache:
result = await self.client.run_async(
"fal-ai/ltx-video",
{"input": {"prompt": prompt}}
)
self.cache[prompt] = result.video.url
async def get_video(self, prompt):
if prompt in self.cache:
return self.cache[prompt]
# Generate on-demand if not cached
result = await self.client.run_async(...)
return result.video.urlStrategy 5: Reduce Resolution
Lower resolution = faster generation:
python
# Fast: 480p
{"resolution": {"width": 854, "height": 480}}
# Balanced: 720p
{"resolution": {"width": 1280, "height": 720}}
# Quality: 1080p
{"resolution": {"width": 1920, "height": 1080}}Strategy 6: Shorter Duration
Shorter videos generate faster:
python
# 3 seconds = ~30s generation # 5 seconds = ~45s generation # 10 seconds = ~90s generation
Monitoring Latency
python
import time
start = time.time()
result = client.run("fal-ai/minimax/video-01", {...})
latency = time.time() - start
# Log to your metrics system
metrics.record('video_generation_latency', latency, {
'model': 'minimax',
'duration': 5
})Best Practices Summary
- Choose the right model for your latency needs
- Show preview images while generating
- Use WebSockets for progress updates
- Pre-generate common content
- Optimize resolution and duration
- Monitor and track latency metrics
Next Steps
- Master frame interpolation
- Set up webhooks
- Learn batch processing
#video#performance#streaming#real-time